Fix "git" case sensitivity issue.
authorThomas Mansencal <thomas.mansencal@gmail.com>
Thu, 15 Jan 2015 23:25:47 +0000 (00:25 +0100)
committerThomas Mansencal <thomas.mansencal@gmail.com>
Thu, 15 Jan 2015 23:25:47 +0000 (00:25 +0100)
aces_1.0.0/python/aces_ocio/create_ARRI_colorspaces.py [deleted file]
aces_1.0.0/python/aces_ocio/create_RED_colorspaces.py [deleted file]

diff --git a/aces_1.0.0/python/aces_ocio/create_ARRI_colorspaces.py b/aces_1.0.0/python/aces_ocio/create_ARRI_colorspaces.py
deleted file mode 100644 (file)
index be56c9d..0000000
+++ /dev/null
@@ -1,219 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-"""
-Implements support for *ARRI* colorspaces conversions and transfer functions.
-"""
-
-import array
-import math
-
-import aces_ocio.generate_lut as genlut
-from aces_ocio.utilities import ColorSpace, mat44_from_mat33
-
-
-__author__ = 'ACES Developers'
-__copyright__ = 'Copyright (C) 2014 - 2015 - ACES Developers'
-__license__ = ''
-__maintainer__ = 'ACES Developers'
-__email__ = 'aces@oscars.org'
-__status__ = 'Production'
-
-__all__ = ['create_log_c',
-           'create_colorspaces']
-
-
-def create_log_c(gamut,
-                 transfer_function,
-                 exposure_index,
-                 name,
-                 lut_directory,
-                 lut_resolution_1d):
-    """
-    Object description.
-
-    LogC to ACES.
-
-    Parameters
-    ----------
-    parameter : type
-        Parameter description.
-
-    Returns
-    -------
-    type
-         Return value description.
-    """
-
-    name = "%s (EI%s) - %s" % (transfer_function, exposure_index, gamut)
-    if transfer_function == "":
-        name = "Linear - %s" % gamut
-    if gamut == "":
-        name = "%s (EI%s)" % (transfer_function, exposure_index)
-
-    cs = ColorSpace(name)
-    cs.description = name
-    cs.equality_group = ''
-    cs.family = 'ARRI'
-    cs.is_data = False
-
-    # Globals
-    IDT_maker_version = "0.08"
-
-    nominal_EI = 400.0
-    black_signal = 0.003907
-    mid_gray_signal = 0.01
-    encoding_gain = 0.256598
-    encoding_offset = 0.391007
-
-    def gain_for_EI(EI):
-        return (math.log(EI / nominal_EI) / math.log(2) * (
-            0.89 - 1) / 3 + 1) * encoding_gain
-
-    def log_c_inverse_parameters_for_EI(EI):
-        cut = 1.0 / 9.0
-        slope = 1.0 / (cut * math.log(10))
-        offset = math.log10(cut) - slope * cut
-        gain = EI / nominal_EI
-        gray = mid_gray_signal / gain
-        # The higher the EI, the lower the gamma
-        enc_gain = gain_for_EI(EI)
-        enc_offset = encoding_offset
-        for i in range(0, 3):
-            nz = ((95.0 / 1023.0 - enc_offset) / enc_gain - offset) / slope
-            enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain
-        # Calculate some intermediate values
-        a = 1.0 / gray
-        b = nz - black_signal / gray
-        e = slope * a * enc_gain
-        f = enc_gain * (slope * b + offset) + enc_offset
-        # Manipulations so we can return relative exposure
-        s = 4 / (0.18 * EI)
-        t = black_signal
-        b += a * t
-        a *= s
-        f += e * t
-        e *= s
-
-        return {'a': a,
-                'b': b,
-                'cut': (cut - b) / a,
-                'c': enc_gain,
-                'd': enc_offset,
-                'e': e,
-                'f': f}
-
-    def log_c_to_linear(code_value, exposure_index):
-        p = log_c_inverse_parameters_for_EI(exposure_index)
-        breakpoint = p['e'] * p['cut'] + p['f']
-        if (code_value > breakpoint):
-            linear = ((pow(10, (code_value / 1023.0 - p['d']) / p['c']) -
-                       p['b']) / p['a'])
-        else:
-            linear = (code_value / 1023.0 - p['f']) / p['e']
-
-        # print(codeValue, linear)
-        return linear
-
-
-    cs.to_reference_transforms = []
-
-    if transfer_function == "V3 LogC":
-        data = array.array('f', "\0" * lut_resolution_1d * 4)
-        for c in range(lut_resolution_1d):
-            data[c] = log_c_to_linear(1023.0 * c / (lut_resolution_1d - 1),
-                                      int(exposure_index))
-
-        lut = "%s_to_linear.spi1d" % (
-            "%s_%s" % (transfer_function, exposure_index))
-
-        # Remove spaces and parentheses
-        lut = lut.replace(' ', '_').replace(')', '_').replace('(', '_')
-
-        genlut.write_SPI_1d(lut_directory + "/" + lut,
-                            0.0,
-                            1.0,
-                            data,
-                            lut_resolution_1d,
-                            1)
-
-        # print("Writing %s" % lut)
-        cs.to_reference_transforms.append({
-            'type': 'lutFile',
-            'path': lut,
-            'interpolation': 'linear',
-            'direction': 'forward'
-        })
-
-    if gamut == 'Wide Gamut':
-        cs.to_reference_transforms.append({
-            'type': 'matrix',
-            'matrix': mat44_from_mat33([0.680206, 0.236137, 0.083658,
-                                      0.085415, 1.017471, -0.102886,
-                                      0.002057, -0.062563, 1.060506]),
-            'direction': 'forward'
-        })
-
-    cs.from_reference_transforms = []
-    return cs
-
-
-def create_colorspaces(lut_directory, lut_resolution_1d):
-    """
-    Generates the colorspace conversions.
-
-    Parameters
-    ----------
-    parameter : type
-        Parameter description.
-
-    Returns
-    -------
-    type
-         Return value description.
-    """
-
-    colorspaces = []
-
-    transfer_function = "V3 LogC"
-    gamut = "Wide Gamut"
-
-    # EIs = [160.0, 200.0, 250.0, 320.0, 400.0, 500.0, 640.0, 800.0,
-    # 1000.0, 1280.0, 1600.0, 2000.0, 2560.0, 3200.0]
-    EIs = [160, 200, 250, 320, 400, 500, 640, 800,
-           1000, 1280, 1600, 2000, 2560, 3200]
-    default_EI = 800
-
-    # Full conversion
-    for EI in EIs:
-        log_c_EI_full = create_log_c(
-            gamut,
-            transfer_function,
-            EI,
-            "LogC",
-            lut_directory,
-            lut_resolution_1d)
-        colorspaces.append(log_c_EI_full)
-
-    # Linearization only
-    for EI in [800]:
-        log_c_EI_linearization = create_log_c(
-            "",
-            transfer_function,
-            EI,
-            "LogC",
-            lut_directory,
-            lut_resolution_1d)
-        colorspaces.append(log_c_EI_linearization)
-
-    # Primaries
-    log_c_EI_primaries = create_log_c(
-        gamut,
-        "",
-        default_EI,
-        "LogC",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(log_c_EI_primaries)
-
-    return colorspaces
diff --git a/aces_1.0.0/python/aces_ocio/create_RED_colorspaces.py b/aces_1.0.0/python/aces_ocio/create_RED_colorspaces.py
deleted file mode 100644 (file)
index 4c09151..0000000
+++ /dev/null
@@ -1,239 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-"""
-Implements support for *RED* colorspaces conversions and transfer functions.
-"""
-
-import array
-
-import aces_ocio.generate_lut as genlut
-from aces_ocio.utilities import ColorSpace, mat44_from_mat33
-
-__author__ = 'ACES Developers'
-__copyright__ = 'Copyright (C) 2014 - 2015 - ACES Developers'
-__license__ = ''
-__maintainer__ = 'ACES Developers'
-__email__ = 'aces@oscars.org'
-__status__ = 'Production'
-
-__all__ = ['create_RED_log_film',
-           'create_colorspaces']
-
-
-def create_RED_log_film(gamut,
-                        transfer_function,
-                        name,
-                        lut_directory,
-                        lut_resolution_1d):
-    """
-    Object description.
-
-    RED colorspaces to ACES.
-
-    Parameters
-    ----------
-    parameter : type
-        Parameter description.
-
-    Returns
-    -------
-    type
-         Return value description.
-    """
-
-    name = "%s - %s" % (transfer_function, gamut)
-    if transfer_function == "":
-        name = "Linear - %s" % gamut
-    if gamut == "":
-        name = "%s" % transfer_function
-
-    cs = ColorSpace(name)
-    cs.description = name
-    cs.equality_group = ''
-    cs.family = 'RED'
-    cs.is_data = False
-
-    def cineon_to_linear(code_value):
-        n_gamma = 0.6
-        black_point = 95.0
-        white_point = 685.0
-        code_value_to_density = 0.002
-
-        black_linear = pow(10.0, (black_point - white_point) * (
-            code_value_to_density / n_gamma))
-        code_linear = pow(10.0, (code_value - white_point) * (
-            code_value_to_density / n_gamma))
-
-        return (code_linear - black_linear) / (1.0 - black_linear)
-
-    cs.to_reference_transforms = []
-
-    if transfer_function == 'REDlogFilm':
-        data = array.array('f', "\0" * lut_resolution_1d * 4)
-        for c in range(lut_resolution_1d):
-            data[c] = cineon_to_linear(1023.0 * c / (lut_resolution_1d - 1))
-
-        lut = "CineonLog_to_linear.spi1d"
-        genlut.write_SPI_1d(lut_directory + "/" + lut,
-                            0.0,
-                            1.0,
-                            data,
-                            lut_resolution_1d,
-                            1)
-
-        cs.to_reference_transforms.append({
-            'type': 'lutFile',
-            'path': lut,
-            'interpolation': 'linear',
-            'direction': 'forward'})
-
-    if gamut == 'DRAGONcolor':
-        cs.to_reference_transforms.append({
-            'type': 'matrix',
-            'matrix': mat44_from_mat33([0.532279, 0.376648, 0.091073,
-                                      0.046344, 0.974513, -0.020860,
-                                      -0.053976, -0.000320, 1.054267]),
-            'direction': 'forward'})
-    elif gamut == 'DRAGONcolor2':
-        cs.to_reference_transforms.append({
-            'type': 'matrix',
-            'matrix': mat44_from_mat33([0.468452, 0.331484, 0.200064,
-                                      0.040787, 0.857658, 0.101553,
-                                      -0.047504, -0.000282, 1.047756]),
-            'direction': 'forward'})
-    elif gamut == 'REDcolor2':
-        cs.to_reference_transforms.append({
-            'type': 'matrix',
-            'matrix': mat44_from_mat33([0.480997, 0.402289, 0.116714,
-                                      -0.004938, 1.000154, 0.004781,
-                                      -0.105257, 0.025320, 1.079907]),
-            'direction': 'forward'})
-    elif gamut == 'REDcolor3':
-        cs.to_reference_transforms.append({
-            'type': 'matrix',
-            'matrix': mat44_from_mat33([0.512136, 0.360370, 0.127494,
-                                      0.070377, 0.903884, 0.025737,
-                                      -0.020824, 0.017671, 1.003123]),
-            'direction': 'forward'})
-    elif gamut == 'REDcolor4':
-        cs.to_reference_transforms.append({
-            'type': 'matrix',
-            'matrix': mat44_from_mat33([0.474202, 0.333677, 0.192121,
-                                      0.065164, 0.836932, 0.097901,
-                                      -0.019281, 0.016362, 1.002889]),
-            'direction': 'forward'})
-
-    cs.from_reference_transforms = []
-    return cs
-
-
-def create_colorspaces(lut_directory, lut_resolution_1d):
-    """
-    Generates the colorspace conversions.
-
-    Parameters
-    ----------
-    parameter : type
-        Parameter description.
-
-    Returns
-    -------
-    type
-         Return value description.
-    """
-
-    colorspaces = []
-
-    # Full conversion
-    RED_log_film_dragon = create_RED_log_film(
-        "DRAGONcolor",
-        "REDlogFilm",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_dragon)
-
-    RED_log_film_dragon2 = create_RED_log_film(
-        "DRAGONcolor2",
-        "REDlogFilm",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_dragon2)
-
-    RED_log_film_color2 = create_RED_log_film(
-        "REDcolor2",
-        "REDlogFilm",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_color2)
-
-    RED_log_film_color3 = create_RED_log_film(
-        "REDcolor3",
-        "REDlogFilm",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_color3)
-
-    RED_log_film_color4 = create_RED_log_film(
-        "REDcolor4",
-        "REDlogFilm",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_color4)
-
-    # Linearization only
-    RED_log_film_dragon = create_RED_log_film(
-        "",
-        "REDlogFilm",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_dragon)
-
-    # Primaries only
-    RED_log_film_dragon = create_RED_log_film(
-        "DRAGONcolor",
-        "",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_dragon)
-
-    RED_log_film_dragon2 = create_RED_log_film(
-        "DRAGONcolor2",
-        "",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_dragon2)
-
-    RED_log_film_color2 = create_RED_log_film(
-        "REDcolor2",
-        "",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_color2)
-
-    RED_log_film_color3 = create_RED_log_film(
-        "REDcolor3",
-        "",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_color3)
-
-    RED_log_film_color4 = create_RED_log_film(
-        "REDcolor4",
-        "",
-        "REDlogFilm",
-        lut_directory,
-        lut_resolution_1d)
-    colorspaces.append(RED_log_film_color4)
-
-    return colorspaces